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A novel transfer learning model for predictive analytics using incomplete
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Disease Neuroimaging Initiative�
aIndustrial Engineering, Arizona State University, Tempe, AZ, USA; bBanner Alzheimer’s Institute, Phoenix, AZ, USA; cMS Technologies,
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ABSTRACT
Multimodality datasets are becoming increasingly common in various domains to provide comple-
mentary information for predictive analytics. One significant challenge in fusing multimodality
data is that the multiple modalities are not universally available for all samples due to cost and
accessibility constraints. This situation results in a unique data structure called an Incomplete
Multimodality Dataset. We propose a novel Incomplete-Multimodality Transfer Learning (IMTL)
model that builds a predictive model for each sub-cohort of samples with the same missing
modality pattern, and meanwhile couples the model estimation processes for different sub-cohorts
to allow for transfer learning. We develop an Expectation-Maximization (EM) algorithm to estimate
the parameters of IMTL and further extend it to a collaborative learning paradigm that is specific-
ally valuable for patient privacy preservation in health care applications. We prove two advanta-
geous properties of IMTL: the ability for out-of-sample prediction and a theoretical guarantee for a
larger Fisher information compared with models without transfer learning. IMTL is applied to diag-
nosis and prognosis of Alzheimer’s disease at an early stage called Mild Cognitive Impairment
using incomplete multimodality imaging data. IMTL achieves higher accuracy than competing
methods without transfer learning.
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1. Introduction

Multimodality datasets are becoming increasingly common
in various domains and provide complementary information
for predictive analytics. For example, in health care, images
of different types such as structural Magnetic Resonance
Imaging (MRI) and FluDeoxyGlucose Positron Emission
Tomography (FDG-PET) provide complementary informa-
tion about the organ of interest, which allows a predictive
model to be built to accurately diagnosing a certain disease.
In manufacturing, data collected from multiple different
types of sensors provide complementary information about
the process and product, allowing for more accurate assess-
ment of process and product quality.

One important challenge for integration of multimodality
datasets in building a predictive model is that the multiple
different modalities are not universally available for all the
samples. Take the diagnosis of Alzheimer’s Disease (AD) – a
fatal neurological disorder – as an example. Figure 1 shows
the special “Incomplete Multimodality Dataset (IMD)” we
are focusing on in this article, which includes three comple-
mentary image modalities, i.e., MRI, FDG-PET, and amyl-
oid-PET for detection of AD at an early stage called Mild

Cognitive Impairment (MCI). In the recently published
expert consensus criteria by the National Institute of Aging
and Alzheimer’s Association, the use of multimodality
images for early detection of AD has been highly
recommended (Albert et al., 2011). In Figure 1, each sub-
cohort consists of patients who have the same availability of
modalities. Different sub-cohorts have different missing
modality patterns. The reasons for IMD are multifold: some
imaging equipment such as PET is costly and only available
in limited clinics; some modalities are not accessible to
patients due to insurance coverage; it is not safe to put
patients with some pre-existing conditions through a certain
imaging examination.

If we applied existing methods to model IMD, there
would be three options:

1. Filling in missing data using some imputation algo-
rithms (He et al., 2017). As an IMD dataset misses the
entire modality/modalities and not individual features
within a modality, there are too many missing values to
fill in. The resulting dataset may have poor quality.

CONTACT Jing Li jinglz@asu.edu�Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Supplemental data for this article can be accessed online at https://doi.org/10.1080/24725854.2020.1798569.

Copyright � 2020 “IISE”

IISE TRANSACTIONS
https://doi.org/10.1080/24725854.2020.1798569

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2020.1798569&domain=pdf&date_stamp=2020-09-17
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1080/24725854.2020.1798569
https://doi.org/10.1080/24725854.2020.1798569
http://www.tandfonline.com


2. Separate Modeling (SM). Since each sub-cohort has dif-
ferent availability for the modalities, SM builds a separ-
ate predictive model for each sub-cohort using the
available modality/modalities within that sub-cohort.
The limitation of SM is obvious: as each model can
only use the data specific to the corresponding sub-
cohort, sample size shortage may prevent building a
robust model.

3. All Available Data Modeling (AADM). To build a
model for each sub-cohort l, one can incorporate data
from another sub-cohort l0 whose available modalities
include those in l: For example, to build a model for
sub-cohort 2, one can combine the data of MRI and
PDG-PET in sub-cohort 3. As all the available data is
used regardless of the sub-cohort in which the data
resides, this approach is called AADM. Compared with
SM, AADM alleviates the sample size shortage.
However, it requires data pooling from different sub-
cohorts. In reality, different sub-cohorts likely corres-
pond to different health institutions or hospitals, data
pooling is not easy due to the concern of patient priv-
acy. Furthermore, it is known that AADM may not pro-
duce statistical consistent estimators; when it is used to
estimate a covariance matrix, the estimate may not be
positive definite (Little and Rubin, 2002).

In this article, we propose a novel Incomplete-
Multimodality Transfer Learning (IMTL) model to tackle
the limitations of existing methods. IMTL models all the
sub-cohorts simultaneously under a unified framework. In
this way, knowledge obtained from the modeling of each
sub-cohort can be “transferred” to help the modeling of
other sub-cohorts. This makes IMTL a transfer learning
model. Compared with SM, IMTL is not limited by the sam-
ple size of each sub-cohort. Compared with AADM, IMTL
estimates model parameters in an integrated manner, which
overcomes the limitations of AADM in the lack of positive
definiteness and consistency guarantees. Furthermore, we
propose two algorithms for parameter estimation of IMTL:
with and without data pooling. The latter is a computational
framework that includes iterative communication between a
global learner and local learners residing within each sub-
cohort/institution. This allows for between-institutional col-
laborative model estimation without the need for data

pooling. This is particularly important for patient privacy
preservation in health care applications of IMTL.

This article is organized as follows: Section 2 provides a
literature review. Section 3 presents the IMTL. Section 4
investigates unique properties of IMTL. Section 5 presents
case studies. Section 6 is the conclusion.

2. Literature review

This article primarily intersects with the research area of
statistical and machine learning models using data missed in
modalities. To our best knowledge, this area only has limited
work. In what follows, we review each related paper
in detail.

Yuan et al. (2012) proposed an incomplete MultiSource
Feature (iMSF) learning method, which used an l21 penalty
to enforce the same features within each modality to be
selected across different sub-cohorts. One limitation of iMSF
is that it cannot do “out-of-sample prediction”. That is, if a
modality-wise missing pattern is not included in the training
data, iMSF cannot make a prediction on new samples with
that missing pattern. Also, the l21-enabled feature selection
scheme is most effective if different modalities have little
correlation. To overcome the limitations of iMSF, Xiang
et al. (2014) proposed an Incomplete Source-Feature
Selection (ISFS) model. The main idea was to estimate a set
of common coefficients across different sub-cohorts and spe-
cific coefficients to account for the uniqueness of each sub-
cohort. To gain this flexibility, ISFS needs to estimate
many parameters.

Thung et al. (2014) developed a matrix completion
method, which selected samples and features in the original
dataset to produce a smaller dataset. This was done by using
the group-lasso-based multitask learning algorithm twice on
features and samples, respectively. Then, standard missing
data imputation algorithms were applied to the reduced
dataset and classifiers were built on the imputed data.
Although the proposed idea of data reduction is novel,
imputation would still have to be used.

Liu et al. (2017) proposed a View-Aligned Hypergraph
Learning (VAHL) method. VAHL divided the dataset into
several views based on the availability of different modalities.
A hypergraph of subjects was constructed on each view.
Then, the hypergraphs were fused by a view-aligned regular-
izer under a classification framework. VAHL has a novel
perspective of exploiting subject relationships using hyper-
graphs to naturally get around the issue of missing modal-
ities. Also because of this “subject” perspective, the model
has to be retrained from scratch every time new data
become available. Also, VAHL has many parameters
to estimate.

Li et al. (2014) proposed a Deep Learning (DL) frame-
work specifically for imaging data. The basic idea was to
train a 3-D Convolutional Neutral Network (CNN) to estab-
lish a voxel-wise mapping from an MRI image to an FDG-
PET image based on a dataset with both images available.
Then, the CNN could be used to create a “pseudo” FDG-
PET from an MRI image for any patient with a missing

Figure 1. An example of the IMD, in which MRI, FDG-PET, and amyloid-PET are
considered as three modalities. Columns within each modality represent fea-
tures extracted from the image. Each sub-cohort consists of patients with the
same availability of modalities.
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FDG-PET. To perform a diagnosis or prognosis for a
patient, both MRI and FDG-PET (real or pseudo) would be
used. This work represents one of the pioneering works that
introduced DL into imaging-based AD research. On the
other hand, as MRI measures brain structure and FDG-PET
measures brain function, crafting one from the other may
not be biologically valid, even though this is possible from a
pure data-driven perspective. Furthermore, there is a con-
cern of uncertainty propagation as the uncertainty in estab-
lishing the voxel-wise mapping between MRI and FDG-PET
will propagate to the uncertainty of the pseudo FDG-PET,
which further affects the diagnosis and prognosis based on
the pseudo FDG-PET. Also, this approach was developed to
model two image modalities, and is not directly applicable
to datasets with more than two modalities and complicated
missing patterns.

In summary, limited work has been done to develop stat-
istical models for IMD data. All the above-reviewed models,
despite their specific weakness, share some common limita-
tions:(i) most models cannot do out-of-sample prediction,
which limits broader utilization; (ii) model estimation needs
data pooling from different sub-cohorts. If the sub-cohorts
correspond to different health institutions, which is typically
the case, protection of the patient’s data privacy is a con-
cern; (iii) although it shows an empirically good perform-
ance on specific datasets, there is a lack of theoretical study
on why the performance is guaranteed.

3. Development of the IMTL model

For notational simplicity, we present our model develop-
ment in the context of three modalities; however, the model
is generalizable to more modalities. For example, the three
modalities can be MRI, FDG-PET and amyloid-PET as
shown in Figure 1. There are four sub-cohorts correspond-
ing to different availabilities of the modalities: MRI alone;
MRI & FDG-PET; MRI & amyloid-PET; all three modalities.

Let k be the index for modalities, k ¼ 1, 2, 3; l be the
index for sub-cohorts, l ¼ 1, 2, 3, 4; and i be the index for
samples/patients, i ¼ 1, :::, n: Denote the sample size of each
sub-cohort by nl:

P4
l¼1 nl ¼ n: Furthermore, let xðklÞi contain

features in modality k for patient i in sub-cohort l: Let yðlÞi
be the response variable for patient i in sub-cohort l: We
propose two IMTL models: a predictive model and a classifi-
cation model. Both models are useful in disease diagnosis
and prognosis.

3.1. IMTL predictive model

3.1.1. Formulation and estimation
Consider the joint distribution of yðlÞi , x 2lð Þ

i , and x 3lð Þ
i given

x 1lð Þ
i to be multivariate normal,that is to say�

y lð Þ
i , x 2lð Þ

i , x 3lð Þ
i

�
j x 1lð Þ

i � MVN l x 1lð Þ
i

� �
, R

� �
: (1)

Here, we consider x 1lð Þ
i (e.g., features of MRI) to be fixed

covariates instead of random variables based on the fact that
MRI is in the standard clinical care of AD and thus available

to all the patients. However, x 1lð Þ
i could be considered as

random in the most general formulation, doing so would
need a joint distribution of ðy lð Þ

i , x 2lð Þ
i , x 3lð Þ

i , x 1lð Þ
i Þ , which

requires more parameters to be estimated than the pro-
posed approach.

In Equation (1), l �ð Þ is a vector function of covariates:

l x 1lð Þ
i

� �
¼ x 1lð Þ

i b1 þ b0, x 1lð Þ
i A2 þ b2, x 1lð Þ

i A3 þ b3

� �
,

where b1, b0, A2, b2, A3, b3 are coefficients. R in
Equation (1) can be written in a more explicit format to
include sub-matrices of covariances between the response
and each modality and between the modalities:

R ¼
r2y Ry2 Ry3

R2y R22 R23

R3y R32 R33

0
B@

1
CA, (2)

Let H ¼ ðR, b1, b0, A2, b2, A3, b3Þ contain all the
unknown parameters for the model in Equation (1).
Furthermore, let Dmis and Dobs contain the missing and
observed data, respectively. That is,

Dmis ¼ x 21ð Þ
i , x 31ð Þ

i

n on1

i¼1
, x 32ð Þ

i

n on2

i¼1
, x 24ð Þ

i

n on4

i¼1

� �
,

and

Dobs ¼
nn

xð11Þi , yð1Þi

on1

i¼1
,
n
xð12Þi , xð22Þi , yð2Þi

on2

i¼1
,n

xð13Þi , xð23Þi , xð33Þi , yð3Þi

on3

i¼1
,
n
xð14Þi , xð34Þi , yð4Þi

on4

i¼1

o
:

Then, we can write down the complete-data log-likelihood
function:

lðH;Dobs, DmisÞ

¼ �n logjRj �
X4
l¼1

Xnl
i¼1

ðyðlÞi � xð1lÞi b1 � b0,

xð2lÞi � xð1lÞi A2 � b2, xð3lÞi � xð1lÞi A3 � b3ÞR�1

ðyðlÞi � xð1lÞi b1 � b0, xð2lÞi � xð1lÞi A2 � b2, xð3lÞi � xð1lÞi A3 � b3ÞT :
(3)

Since l H;Dobs, Dmis
� �

includes missing data, we resort to the
Expectation-Maximization (EM) algorithm. The general EM
framework includes an E-step and an M-step. The E-step is
to find the expectation of the complete-data log-likelihood
function with respect to the missing data given the observed
data and the current parameter estimates. In our case, the
E-step is to find:

EDmisj Dobs ,HðtÞ l H;Dobs, Dmis
� �� �

, (4)

where HðtÞ contains the parameter estimates obtained at the
tth iteration. Then, the M-step is to update the parameter
estimates by maximizing the expectation in the E-step:

H tþ1ð Þ ¼ arg max
H

EDmisj Dobs ,HðtÞ l H;Dobs, Dmis
� �� �

: (5)

The two steps are iterated until convergence. The challenges
in using the general EM framework are to derive the expect-
ation and solve the maximization for a specific model (e.g.,
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IMTL in our case). In what follows, we will develop the
details of the E-step and M-step for IMTL.

E-step:
Inserting the complete-data likelihood function in Equation (3)
into the expectation formula in Equation (4), we need to derive
expectations for the statistics contained in a set S :

S ¼ x 21ð Þ
i , x 31ð Þ

i , x 32ð Þ
i , x 24ð Þ

i ,
ðx 21ð Þ

i ÞTx 21ð Þ
i x 31ð Þ

i

� �T
x 21ð Þ
i

ðx 21ð Þ
i ÞT x 31ð Þ

i x 31ð Þ
i

� �T
x 31ð Þ
i

0
BB@

1
CCA,

ðx 32ð Þ
i ÞTx 32ð Þ

i , ðxð24Þi ÞTxð24Þi

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

Next, we need to derive the expectation of each element
contained in S: For example, focus on x 21ð Þ

i , x 31ð Þ
i

� �
first.

We can derive that:

~x 21ð Þ
i , ~x 31ð Þ

i

� �
¢E x 21ð Þ

i , x 31ð Þ
i

� �
x 11ð Þ
i , y 1ð Þ

i , H tð Þ
h i

¼ x 11ð Þ
i A tð Þ

2 þ b tð Þ
2 , x 11ð Þ

i A tð Þ
3 þ b tð Þ

3

� �
þ R tð Þ

2y , R tð Þ
3y

� �
r tð Þ2
y

� ��1
ðy 1ð Þ

i � x 11ð Þ
i b tð Þ

1 � bðtÞ0
�
,

(6)

Similarly, the expectations of x 32ð Þ
i and x 24ð Þ

i can be obtained
as follows:

~x 32ð Þ
i ¢E x 32ð Þ

i x 12ð Þ
i , x 22ð Þ

i , y 2ð Þ
i , H tð Þ

h i

¼ x 12ð Þ
i b tð Þ

1 þ b tð Þ
0 þ R tð Þ

3y , R tð Þ
32

� � r tð Þ2
y R tð Þ

y2

R tð Þ
2y R tð Þ

22

0
@

1
A

�1

� yð2Þi � x 12ð Þ
i b tð Þ

1 � bðtÞ0
x 22ð Þ
i � x 12ð Þ

i A tð Þ
2 � bðtÞ2

 !
,

(7)

~x 24ð Þ
i ¢E x 24ð Þ

i x 14ð Þ
i , x 34ð Þ

i , y 4ð Þ
i , H tð Þ

h i

¼ x 14ð Þ
i b tð Þ

1 þ b tð Þ
0 þ R tð Þ

2y , R tð Þ
23

� � r tð Þ2
y R tð Þ

y3

R tð Þ
3y R tð Þ

33

0
@

1
A

�1

� yð4Þi � x 14ð Þ
i b tð Þ

1 � bðtÞ0
x 34ð Þ
i � x 14ð Þ

i A tð Þ
3 � bðtÞ3

 !
:

(8)

Using Equations (6)–(8), we can further derive the expecta-
tions of the second-order elements in S as:

E
ðx 21ð Þ

i ÞTx 21ð Þ
i x 31ð Þ

i

� �T
x 21ð Þ
i

ðx 21ð Þ
i ÞT x 31ð Þ

i x 31ð Þ
i

� �T
x 31ð Þ
i

0
BB@

1
CCA

2
664

��������
x 11ð Þ
i , y 1ð Þ

i , H tð Þ

3
775

¼ ð~xð21Þi ÞT~xð21Þi ð~xð31Þi ÞT~xð21Þi

ð~xð21Þi ÞT~xð31Þi ð~xð31Þi ÞT~xð31Þi

 !
þ RðtÞ

22jy RðtÞ
23jy

RðtÞ
32jy RðtÞ

33jy

0
@

1
A,

(9)

E x 24ð Þ
i

� �T
x 24ð Þ
i x 14ð Þ

i ,x 34ð Þ
i , y 4ð Þ

i , H tð Þ
	 


¼ð~xð24Þi ÞT~xð24Þi þRðtÞ
22j3y,

(10)

E x 32ð Þ
i

� �T
x 32ð Þ
i x 12ð Þ

i ,x 22ð Þ
i , y 2ð Þ

i , H tð Þ
	 


¼ð~xð32Þi ÞT~xð32Þi þRðtÞ
33j2y,

(11)

where

RðtÞ
22jy RðtÞ

23jy
RðtÞ
32jy RðtÞ

33jy

0
@

1
A¼ RðtÞ

22 RðtÞ
23

RðtÞ
32 RðtÞ

33

 !
� R tð Þ

2y

R tð Þ
3y

 !
r tð Þ2
y

� ��1
R tð Þ
y2 RðtÞ

y3

� �
,

RðtÞ
22j3y¼RðtÞ

22 � R tð Þ
2y , R

tð Þ
23

� � r tð Þ2
y R tð Þ

y3

R tð Þ
3y R tð Þ

33

0
@

1
A

�1

RðtÞ
y2

RðtÞ
32

 !
,

RðtÞ
33j2y¼RðtÞ

33 � R tð Þ
3y , R

tð Þ
32

� � r tð Þ2
y R tð Þ

y2

R tð Þ
2y R tð Þ

22

0
@

1
A

�1

RðtÞ
y3

RðtÞ
23

 !
:

Next, we plug the derived expectations in Equations (6)-(11)
into the expected complete-data log-likelihood function in
Equation (4). Through some algebra calculations, Equation
(4) can be written as

EDmisjDobs ,HðtÞ ðlðH;Dobs, DmisÞÞ

¼ �n logjRj �
X4
l¼1

Xnl
i¼1

�
yðlÞi � xð1lÞi b1 � b0, ~xð2lÞi

� xð1lÞi A2 � b2, ~xð3lÞi � xð1lÞi A3 � b3

�

� R�1

�
yðlÞi � xð1lÞi b1 � b0, ~xð2lÞi � xð1lÞi A2 � b2, ~xð3lÞi

�xð1lÞi A3 � b3

�T

� tr R�1 n4

0 0 0

0 RðtÞ
22j3y 0

0 0 0

0
B@

1
CA

0
B@

0
B@

þ n2

0 0 0
0 0 0
0 0 RðtÞ

33j2y

0
@

1
Aþ n1

0 0 0
0 RðtÞ

22jy RðtÞ
23jy

0 RðtÞ
32jy RðtÞ

33jy

0
B@

1
CA
1
CA
1
CA:

(12)
In Equation (12), a notational trick is used, i.e., ~x klð Þ

i is used to
represent the data x klð Þ

i no matter if the data is observed or
missing, k ¼ 2, 3; l ¼ 1, :::, 4: When the data is observed, e.g.,
x 22ð Þ
i , we make ~x 22ð Þ

i ¼ x 22ð Þ
i : When the data is missing, e.g.,

x 21ð Þ
i , the expression of ~x 21ð Þ

i is given in Equation (6). This
notational trick facilitates the maximization in the M-step,
which will become apparent in the following discussion.

M-step:
Split the parameter set H into two subsets: ðb1, b0,
A2, b2, A3, b3Þ and R: The maximization problem can be
solved by taking the partial derivative of the expectation in
Equation (12) with respect to each subset and equating the
partial derivatives to zero:

@E
Dmis j Dobs ,HðtÞ l H;Dobs, Dmisð Þð Þ

@ ðb1, b0, A2, b2, A3, b3Þ ¼ 0, and
@E

Dmis j Dobs,HðtÞ l H;Dobs, Dmisð Þð Þ
@ R ¼ 0:

Instead of directly solving these equations, which is compu-
tationally involved, we take an indirect approach by first
obtaining the least square estimators for the coefficients in
the following three regressions:

yðlÞi ~x 1lð Þ
i b1 þ b0

~x 2lð Þ
i ~x 1lð Þ

i A2 þ b2
~x 3lð Þ
i ~x 1lð Þ

i A3 þ b3

:

8><
>:

The least square estimators are:
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b tþ1ð Þ
0

b tþ1ð Þ
1

0
@

1
A ¼

X4
l¼1

Xnl
i¼1

1, x 1lð Þ
i

� �T
1, x 1lð Þ

i

� � !�1X4
l¼1

Xnl
i¼1

1, x 1lð Þ
i

� �T
yðlÞi

b tþ1ð Þ
2

A tþ1ð Þ
2

0
@

1
A ¼

X4
l¼1

Xnl
i¼1

1, x 1lð Þ
i

� �T
1, x 1lð Þ

i

� � !�1X4
l¼1

Xnl
i¼1

1, x 1lð Þ
i

� �T
~xð2lÞi

b tþ1ð Þ
3

A tþ1ð Þ
3

0
@

1
A ¼

X4
l¼1

Xnl
i¼1

1, x 1lð Þ
i

� �T
1, x 1lð Þ

i

� � !�1X4
l¼1

Xnl
i¼1

1, x 1lð Þ
i

� �T
~xð3lÞi

:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(13)

It is not hard to show that these estimators are equivalent to
the optimal solutions for ðb1, b0, A2, b2, A3, b3Þ in the

M-step. Furthermore, let zðlÞi ¼ ðy lð Þ
i � x 1lð Þ

i b tþ1ð Þ
1 � b tþ1ð Þ

0 ,

~x 2lð Þ
i � x 1lð Þ

i A tþ1ð Þ
2 � b tþ1ð Þ

2 , ~x 3lð Þ
i � x 1lð Þ

i A tþ1ð Þ
3 � b tþ1ð Þ

3 Þ: Then,
we can obtain the optimal solution for R as

Rðtþ1Þ ¼ 1
n

X4
l¼1

Xnl
i¼1

ðzðlÞi ÞTzðlÞi þ n4

0 0 0

0 RðtÞ
22j3y 0

0 0 0

0
B@

1
CA

8><
>:

þ n2

0 0 0

0 0 0

0 0 RðtÞ
33j2y

0
B@

1
CAþ n1

0 0 0

0 RðtÞ
22jy RðtÞ

23jy

0 RðtÞ
32jy RðtÞ

33jy

0
BB@

1
CCA
9>>=
>>;:

(14)

3.1.2. Prediction
Upon convergence of the above EM iterations, we can
obtain the estimated parameters Ĥ ¼ ðR̂, b̂1, b̂0,
Â2, b̂2, Â3, b̂3Þ: Using these estimated parameters, we can
further obtain the estimated joint distribution of
y lð Þ
i , x 2lð Þ

i , x 3lð Þ
i Þ j x 1lð Þ

i in Equation (1). Then, we can derive
any conditional distribution allowing for prediction of new
samples in each sub-cohort through conditional probability
rules and probability marginalization. Specifically, let i�

denote a new sample. The formulas for predicting the
response variable ŷi� when the sample belongs to different
sub-cohorts are as follows:

ŷi� ¼ xð11Þi� b̂1 þ b̂0, if i
� 2 sub� cohort 1;

ŷi� ¼ xð12Þi ðb̂1 � Â2R̂
�1
22 R̂2yÞ þ xð22Þi R̂

�1
22 R̂2y þ ðb̂0 � b̂2R̂

�1
22

R̂2yÞ, if i� 2 sub� cohort 2;

ŷi� ¼ x 13ð Þ
i� b̂1 � Â2, Â3

� � R̂22 R̂23

R̂32 R̂33

 !�1
R̂2y

R̂3y

 !0
@

1
A

þ x 23ð Þ
i� , x 33ð Þ

i�

� �
R̂22 R̂23

R̂32 R̂33

 !�1
R̂2y

R̂3y

 !

þ b̂0 � ðb̂2, b̂3Þ R̂22 R̂23

R̂32 R̂33

 !�1
R̂2y

R̂3y

 !0
@

1
A,

if i� 2 sub� cohort 3;
ŷi� ¼ x 14ð Þ

i� b̂1 � Â3R̂
�1
33 R̂3y

� �
þ x 34ð Þ

i� R̂
�1
33 R̂3y þ ðb̂0 � b̂3R̂

�1
33

R̂3yÞ, if i� 2 sub� cohort 4:

3.2. IMTL classification model

In the classification model, yðlÞi can take a value of either
zero or one, depending on the class it represents. Within
each class, consider the joint distribution x 2lð Þ

i and x 3lð Þ
i given

x 1lð Þ
i to be multivariate normal:

ðx 2lð Þ
i , x 3lð Þ

i Þjx 1lð Þ
i , y lð Þ

i ¼ 1 � MVN
�
l1 x 1lð Þ

i

� �
, R
�
, (15)

ðx 2lð Þ
i , x 3lð Þ

i Þjx 1lð Þ
i , y lð Þ

i ¼ 0 � MVN
�
l0 x 1lð Þ

i

� �
, R
�
, (16)

where the class-specific means are linear functions
of x 1lð Þ

i :
l1 x 1lð Þ

i

� �
¼ x 1lð Þ

i A2 þ b21, x 1lð Þ
i A3 þ b31

� �
,

and l0 x 1lð Þ
i

� �
¼ x 1lð Þ

i A2 þ b20, x 1lð Þ
i A3 þ b30

� �
:

The same covariance matrix,

R ¼ R22 R23

R32 R33

� �
,

is assumed for the two classes. Furthermore, we assume the
distribution of yðlÞi given x 1lð Þ

i to be Bernoulli, that is

y lð Þ
i ¼ 1jx 1lð Þ

i � Bernoulli
1

1þ expf�x 1lð Þ
i b1 � b0g

 !
: (17)

Let ~H ¼ ðR~, b1, b0, A2, b21, b20, A3, b31, b30Þ contain the
unknown parameters for the model in (15)-(17). We can
write down the complete-data log-likelihood function:

lð ~H;Dobs, DmisÞ

¼ �nlogjRj þ
X4
l¼1

Xnl
i¼1

ðyðlÞi ðxð2lÞi � xð1lÞi A2 � b21, xð3lÞi

� xð1lÞi A3 � b31ÞR�1ðxð2lÞi � xð1lÞi A2 � b21, xð3lÞi

�xð1lÞi A3 � b31ÞT þ
�
1� yðlÞi

�
ðxð2lÞi � xð1lÞi A2

� b20, xð3lÞi � xð1lÞi A3 � b30ÞR�1ðxð2lÞi � xð1lÞi A2

� b20, xð3lÞi � xð1lÞi A3 � b30ÞTÞ þ yðlÞi ðxð1lÞi b1 þ b0Þ
� logð1þ expðxð1lÞi b1 þ b0ÞÞ:

(18)

Equation (18) can be decomposed into a logistic regression
and a conditional multivariate normal distribution. As a
result, we can estimate b1, b0ð Þ and the remaining parame-
ters in ~H separately. Specifically, b1, b0ð Þ are coefficients of
the logistic regression model:

logit P y lð Þ
i ¼ 1

� �� �
¼ x 1lð Þ

i b1 þ b0:

This model does not involve missing data, which means that
b1, b0ð Þ can be estimated by iteratively reweighted least
squares estimation.

Furthermore, let H be the parameters in ~H excluding
b1, b0ð Þ: H can be estimated by a similar EM algorithm to
the predictive model in Section 3.1. Please see Online
Supplement for the formula in the EM algorithm and in the
classification models on new samples.
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3.3. Collaborative model estimation without
data pooling

One reason leading to the generation of IMD data in health
care applications is that each sub-cohort corresponds to a
different institution. The availability of modalities varies
across the different institutions due to accessibility and cost.
In the IMTL models proposed in Sections 3.1 and 3.2,
model estimation is assumed to happen at a centralized
place into which the data from different institutions (i.e.,
sub-cohorts) have been deposited. This requires a multi-
institutional data sharing agreement – a process known to
be both time- and effort-intensive. A more commonly
encountered scenario is that different institutions like to col-
laborate on model estimation without having to share their
respective patients’ data. In this section, we address the lat-
ter scenario by proposing a computational framework for
model estimation. This framework uses the same equations
as those in Sections 3.1 and 3.2, but it computes the equa-
tions at the E-step locally at each institution, as each equa-
tion only involves the data from a single institution. This is
shown as the four vertical rectangular boxes in Figure 2. For
example, Equation (6) in the E-step computes the expecta-
tions of two missing modalities in sub-cohort 1, x 21ð Þ

i and
x 31ð Þ
i , which only involve the data from sub-cohort 1, x 11ð Þ

i
and y 1ð Þ

i : This nice “local” property also holds for other
equations in the E-step. At the M-step, the proposed frame-
work combines the locally computed results in a centralized
place, which is shown as the horizontal rectangular box at
the top of Figure 2. As these results do not reveal the raw
data in each institution, patient privacy is preserved within
each institution. The key idea of this computational frame-
work is to consider the M- and E-steps as a global and a
local learner, respectively. The global learner resides in a
centralized place, whereas the local learners reside in each
sub-cohort. A local learner can only “see” the data within
the respective sub-cohort and performs calculations locally.

Results from the local computation, not the data, are sent to
the global learner for combination.

Compared with the centralized model estimation in
Sections 3.1 and 3.2, this computational framework involves
communications among the global and local learners. As a
result, there may be loss of efficiency due to limited com-
munication bandwidth. On the other hand, this problem can
be potentially mitigated because the computations of local
learners can be performed in parallel.

3.4. Generalization to M modalities

The presentation of IMTL in Sections 3.1 to 3.3 is within
the context of three modalities based on the consideration
of notational simplicity. In this section, we provide the steps
of extending IMTL to the general case of M modalities:

1. Given a multimodality dataset from an application, sub-
jects (a.k.a. samples) are grouped into sub-cohorts with
each sub-cohort having a different pattern of miss-
ing modalities.

2. Depending on the type of the response variable, one
can decide if the problem to be tackled should be for-
mulated as regression or classification. For a regression
problem, a multivariate normal distribution can be
assumed for the modalities and the response. For classi-
fication problems, a multivariate normal distribution
can be assumed for the modalities and a Bernoulli dis-
tribution can be assumed for the response. For most
applications, there is at least one modality available
across all the sub-cohorts. If this is the case, the afore-
mentioned distributions can be modified into condi-
tional distributions given the available modality. Next,
one can write down the complete-data log-likelihood
function under the distribution assumption.

Figure 2. A computational framework for collaborative model estimation of IMTL without data pooling from different sub-cohorts.
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3. In the E-step of the EM algorithm, the key is to identify
the sufficient statistics of the log-likelihood function,
which include the missing modalities in each sub-
cohort, the quadratic term of each missing modality,
and pair-wise products between the missing modalities
in that sub-cohort (if there is more than one missing
modality). Then, one can derive expectations of the suf-
ficient statistics given the observed data and parameter
estimates from the previous iteration. Further, these
expected sufficient statistics are plugged into the
expected complete-data log-likelihood function, which
will be maximized in the M-step.

4. In the M-step, an intuitive, but mathematically-
involved, approach is to equate the first-order partial
derivative of each parameter to zero and solve the par-
ameter-wise simultaneous equations to update the par-
ameter set. Alternative approaches can be developed to
solve the maximization problem easier, depending on
the form of the log-likelihood function. For example, in
the three-modality case, we use a notational trick, which
allowed us to convert the maximization into least square
estimations.

Computational complexity: The proposed EM algorithm
for IMTL estimation has analytical solutions in the E-step
and M-step. Therefore, the computational complexity pri-
marily comes from the iterations between the two steps until
convergence. The complexity of the EM iterations has been
well-studied in the literature. Furthermore, within the E-
step, since there are no iterations but just arithmetic opera-
tions based on derived mathematical formula, the complex-
ity primarily depends on how many expectations to
compute. Given M modalities, the total number of sub-
cohorts with missing modalities is L ¼ 2M�1 � 1: Within
each sub-cohort, there are two types of expectations to com-
pute, including the mean vector and variance-covariance
matrix of the missing features. Therefore, the complexity of
the E-step can be considered as 2 2M�1 � 1ð Þ: Within the M-
step, the complexity primarily depends on how many
parameters to estimate. Suppose each modality has p fea-
tures. The total number of parameters is

1
2

M � 1ð Þ2p2 þ M � 1ð Þp2 þ 5
2

M � 1ð Þpþ pþ 2:

4. Properties of IMTL

In this section, we discuss two unique properties of IMTL:
(i) the ability for out-of-sample prediction; and (iii) a theor-
etical guarantee for a larger Fisher information compared
with models without transfer learning, which explains the
superiority of IMTL from a theoretical point of view.

4.1. Ability for out-of-sample prediction

Definition: Let Dtr denote a training set. Suppose the train-
ing samples can be divided into L sub-cohorts, where each
sub-cohort corresponds to a different missing modality

pattern in P1, :::,PLf g: Let i� be a sample in a test set,
whose missing modality pattern is P i�ð Þ: Assume P i�ð Þ 62
P1, :::,PLf g: If a model trained on Dtr can be used predict
i�, the model is called capable of out-of-sample prediction.

For example, a training set can include only sub-cohorts
1, 2, and 4 in Figure 1, whereas the test set includes sub-
cohort 3. It is obvious that the two competing methods, i.e.,
SM and AADM, cannot do out-of-sample prediction. In
contrast, IMTL is capable of out-of-sample prediction. Next,
we provide an illustrative proof for this capability of IMTL.
We focus on the predictive model in Section 3.1. Also, for
notational simplicity, each modality is assumed to contain
one feature.

Consider a sample i� in the test set which belongs to
sub-cohort 3. To predict the response variable of this sam-
ple, Equation (19) will be used:

ŷð3Þi� ¼ x 13ð Þ
i� b̂1 � Â2, Â3

� � R̂22 R̂23

R̂32 R̂33

 !�1
R̂2y

R̂3y

 !0
@

1
A

þ x 23ð Þ
i� , x 33ð Þ

i�

� �
R̂22 R̂23

R̂32 R̂33

 !�1
R̂2y

R̂3y

 !

þ b̂0 � ðb̂2, b̂3Þ R̂22 R̂23

R̂32 R̂33

 !�1
R̂2y

R̂3y

 !0
@

1
A:

(19)

The parameters of the model in Equation (19) are estimated
from a training set which only includes sub-cohorts 1, 2,
and 4 but not 3. It is easy to understand why estimation of
other parameters is possible except R23: Intuitively, since
R23 is the covariance between features in modalities 2 and 3,
one would expect to have at least some training data from
sub-cohort 3, which have both modalities 2 and 3 available,
in order to estimate R23: However, this is not our case. The
key to demonstrating that IMTL can do out-of-sample pre-
diction is to demonstrate that the estimation for R23 is pos-
sible by IMTL even without any data from sub-cohort 3 in
the training set. To show this, consider the estimation for
R23 by the EM algorithm. At convergence, it can be derived
that R23 can be estimated by Equation (20). The detailed
derivation is skipped due to space limitations:

R̂23 ¼ 1
n� n1 � ~n2 � ~n4

ð~n1 � n1ÞR̂2yðr̂2
yÞ�1R̂y3

þ 1
k2

Xn2

i¼1
ðxð22Þi � xð12Þi Â2 � b̂2Þ

� ðyð2Þi � xð12Þi ðb̂1 � Â2R̂
�1
22 R̂2yÞ � xð22Þi R̂

�1
22 R̂2y

�ðb̂0 � b̂2 R̂
�1
22 R̂2yÞÞR̂y3

þ 1
k3

Xn4
i¼1

ðxð34Þi � xð14Þi Â3 � b̂3Þ

� ðyð4Þi � xð14Þi ðb̂1 � Â3R̂
�1
33 R̂3yÞ

� xð34Þi R̂
�1
33 R̂3y � ðb̂0 � b̂3 R̂

�1
33 R̂3yÞÞR̂y2,

(20)

where
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k2 ¼ r̂2
y � R̂y2R̂

�1
22 R̂2y, k3 ¼ r̂2

y � R̂y3R̂
�1
33 R̂3y,

~n1 ¼
Xn1
i¼1

y 1ð Þ
i � x 11ð Þ

i b̂1 � b̂0

� �2
r̂2
y

,

~n2 ¼
Xn2

i¼1
x 22ð Þ
i � x 12ð Þ

i Â2 � b̂2

� �2
� R̂

�1
22 þ 1

k2
R̂

�1
22 R̂2yR̂y2R̂

�1
22

� �

� 1
k2

Xn2

i¼1
x 22ð Þ
i � x 12ð Þ

i Â2 � b̂2

� �T
� y 2ð Þ

i � x 12ð Þ
i b̂1 � b̂0

� �
R̂y2R̂

�1
22 ,

~n4 ¼
Xn4

i¼1
x 34ð Þ
i � x 14ð Þ

i Â3 � b̂3

� �2
� R̂

�1
33 þ 1

k3
R̂

�1
33 R̂3yR̂y3R̂

�1
33

� �

� 1
k3

Xn2
i¼1

R̂
�1
33 R̂3y y 4ð Þ

i � x 14ð Þ
i b̂1 � b̂0

� �

� x 34ð Þ
i � x 14ð Þ

i Â3 � b̂3

� �
:

Equation (20) indicates that although training data from
sub-cohort 3 are not available, R23 can be estimated indir-
ectly through a summation of three parts:

~n1 � n1ð ÞR̂2y r̂2
y

� ��1
R̂y3 contributes to estimating the covari-

ance between modalities 2 and 3 through exploiting their
respective covariances with y. The second part leverages the
training data in sub-cohort 2, and contributes to estimating
R23 by exploring the covariance between residual modality 2
and residual modality 3. Here, residual modality 2 is modality
2 after factoring out modality 1; residual modality 3 is the
residual of the response variable regressing on modalities 1
and 2. Both residual modalities are computed using the train-
ing data in sub-cohort 2. The third part leverages the training
data in sub-cohort 4, and contributes to estimating R23 by
exploring the covariance between residual modality 2 and 3
that are computed on the training data in sub-cohort 4.

Furthermore, we can explain why estimation of R23 without
sub-cohort 3 is possible from another angle. Using the Law of
Total Covariance, R23 can be decomposed as R23 ¼
R23jy þ R2yRy3=r2y: We cannot estimate R23jy due to the lack of
sub-cohort 3. However, R2y, Ry3, and r2y in the second term
on the right-hand side can be estimated using the available sub-
cohorts. This means that the estimator for R23 will be biased.
Although it would be ideal to have data for sub-cohort 3 to
mitigate the bias in estimating R23, our simulation experiments
in Section 5.1 show that the biased estimator performs well in
prediction. In statistical models, biased estimators are used quite
often and show good performance in prediction tasks.

4.2. Fisher information performance

The next section shows empirical evidence that IMTL outper-
forms SM and AADM, i.e., models without transfer learning.
Here we would like to explain the performance improvement

from a theoretical standpoint, particularly through comparing
the Fisher information of parameter estimates from IMTL and
SM/AADM. Fisher information characterizes the variance of a
maximum likelihood estimate, and larger Fisher information
means smaller variance. It is our goal to find out if IMTL has
larger Fisher information for some parameter estimates than
SM/AADM, indicating more robust parameter estimation.

For clarity of presentation, we focus on a two-modality case
in deriving the Fisher information for IMTL, SM, and AADM.
Modality 1 is available for all patients, but modality 2 is missed
for some patients. This divides the patients into two sub-cohorts:
sub-cohort 1 has modality 1 available, but misses modality 2;
sub-cohort 2 has both modalities available. Following the nota-
tional convention in Section 3, let y lð Þ

i , x 1lð Þ
i , x 2lð Þ

i denote the
response variable, feature in modality 1, and feature in modality
2 for patient i in sub-cohort l, l ¼ 1, 2: Assume one feature in
each modality for notational simplicity. Let Dmis and Dobs con-
tain the missing and observed data, i.e.,

Dmis ¼ x 21ð Þ
i

n on1

i¼1
and

Dobs ¼ x 11ð Þ
i , y 1ð Þ

i

n on1

i¼1
, x 12ð Þ

i , x 22ð Þ
i , y 2ð Þ

i

n on2

i¼1

� �
:

To model this dataset, IMTL assumes a multivariate nor-

mal distribution of y lð Þ
i , x 2lð Þ

i

� �
given x 1lð Þ

i :�
y lð Þ
i , x 2lð Þ

i Þ j x 1lð Þ
i � MVN l x 1lð Þ

i

� �
, R

� �
, l ¼ 1, 2, (21)

where

l x 1lð Þ
i

� �
¼ x 1lð Þ

i b1 þ b0, x 1lð Þ
i A2 þ b2

� �
,

and

R ¼ ryy ry2
r2y r22

� �
:

To estimate the parameters of this IMTL model, a similar
EM algorithm to that proposed in Section 3.1 can be used.
To make predictions on new samples, we can derive the dis-
tributions of y 1ð Þ

i j x 11ð Þ
i and y 2ð Þ

i j x 12ð Þ
i , x 22ð Þ

i from Equation
(21) and use them for predicting samples from sub-cohort 1
and 2, respectively.

If SM is used to model this dataset, there will be two sep-
arate models for the two sub-cohorts. Since sub-cohort 2
has no missing modality, the model for sub-cohort 2 has the
same form as Equation (21) but with l ¼ 2 only. Sub-cohort
1 is separately modeled by a conditional distribution of the
response variable given modality 1:�

y 1ð Þ
i j x 11ð Þ

i � N x 11ð Þ
i a1 þ a0, f2y

� �
: (22)

AADM is similar to SM in the sense that two separate
models are built for the two sub-cohorts. These models take
the same forms as those in SM. However, in estimating the
model parameters for sub-cohort 1, AADM uses all available
data which includes the data of modality 1 from both sub-
cohort 1 and 2, since modality 1 is available for both sub-
cohorts. Recall that in SM, only the data from sub-cohort 1
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is used. To estimate the parameters of SM/AADM, max-
imum likelihood estimation can be used, as no missing data
is involved in the model formulation. To make predictions
on new samples, we can use Equation (22) directly if the
sample is from sub-cohort 1, and use y 2ð Þ

i j x 12ð Þ
i , x 22ð Þ

i if the
sample is from sub-cohort 2.

It can be seen from the above descriptions that IMTL,
SM, and AADM share the same model for sub-cohort 2, but
they estimate the model parameters in different ways.
Theorem 1 compares the Fisher information of the param-
eter estimates for sub-cohort 2 by the three methods, specif-
ically focusing on the estimates for the elements in the
precision matrix:

X¢R�1 ¼ Xyy Xy2

X2y X22

� �
:

Theorem 1: Let IIMRL X22ð Þ, IIMRL X2y
� �

, IIMRL Xyy
� �

be the
Fisher information of the estimates for X22, X2y, and Xyy

under IMTL, respectively. Let ISM �ð Þ and IAADM �ð Þ be the
Fisher information of the estimates for the same parameters
under SM and AADM, respectively. Then,

IIMTL X2y
� �

> ISM X2y
� � ¼ IAADM X2y

� �
, and IIMTL Xyy

� �
> ISM Xyy

� � ¼ IAADM Xyy
� �

:

Furthermore,

IIMTL X22ð Þ > ISM X22ð Þ ¼ IAADM X22ð Þ
under the condition that

�n1 þ 2p1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 2p1ð Þ2 þ 4n1p1

q
4p1

<
r22y

r22ryy
, (23)

where n1 is the sample size of sub-cohort 1 and p1 is number
of features in modality 1.

Please see the proof in the Online Supplement. Theorem
1 shows that the Fisher information for the estimates of X2y

and Xyy under IMTL is greater than SM/AADM uncondi-
tionally. This relationship holds for the estimate of X22

under the condition given in Equation (22). This condition
is worthy of further discussion. Specifically, if considering n1
and p1 to be fixed (i.e., the left-hand side of Equation (22) is
a constant), Theorem 1 indicates that the correlation
between modality 2 and the response variable must be suffi-
ciently large (i.e., larger than the constant) in order for
IMTL to have a larger Fisher information for the estimate of
X22 than SM/AADM. This means that IMTL will be most
effective when the modality with missing data is a significant
predictor for the response. Otherwise, IMTL may not per-
form as well as models without transfer learning because it
runs the risk of transferring noise and thus hurting the
model performance.

5. Application case study

In this section, we apply IMTL to simulated and real-world
datasets. Simulation experiments are presented in Section
5.1, with the purpose of demonstrating the out-of-sample
prediction ability of IMTL, which the competing methods
(i.e., SM and AADM) do not possess. Section 5.2 presents
an application of AD diagnosis and prognosis of MCI
patients using the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset. Here, “diagnosis” means detection
of the existence of AD pathology in the brain of an MCI
patient. “Prognosis” means prediction if an MCI patient will
progress to AD by a certain year of interest, e.g., 6 years.
Both tasks are important for treatment and management of
the patients.

5.1. Simulation experiments

5.1.1. Out-of-sample prediction by IMTL predictive model
We conduct simulation experiments for the IMTL predictive
model and classification model. For the predictive model,
we first generate data for three modalities, i.e.,
xð1lÞi , xð2lÞi , xð3lÞi , from a zero-mean multivariate normal dis-
tribution MVNð0, RÞ: The number of features in each
modality is set to be p1 ¼ 10, p2 ¼ p3 ¼ 5, which are close
to the size of features in the real-world data presented in
Section 5.1. All diagonal elements of R are set to be one. R
includes two parts: within-modality correlation and
between-modality correlation. The former has been found to
have little impact on the model performance and therefore
is set to be 0.6. We investigate two settings for between-
modality correlation: 0.6 and 0, which represent moderately
strong correlation and no correlation. We investigate two
training sample sizes: 300 and 150.

Once the data for features are generated, we generate the
response variable yðlÞ by a linear model,

yðlÞi ¼ xð1lÞi b1 þ xð2lÞi b2 þ xð3lÞi b3 þ b0 þ �:

Here, b0 ¼ 2; elements in b1, b2, b3 are set to be 0.2;
�~N 0, 1ð Þ: Then, the simulated training data are equally sepa-
rated into three sub-cohorts, l ¼ 1, 2, 4, corresponding to
sub-cohorts 1, 2, and 4 in Figure 1. To obtain the incom-
plete modality pattern in each sub-cohort, we remove the
training data of modalities 2 and 3 for sub-cohort 1, remove
modality 3 for sub-cohort 2, and remove modality 2 for
sub-cohort 4. As our intention in this experiment is to
assess the out-of-sample prediction capability of IMTL, we
generate data in a test data that includes only sub-cohort 3,
i.e., all the modalities are available. The sample size of the
test set is 100.

Table 1. Out-of-sample prediction accuracy on the test set with different
training sample sizes (between-modality correlation is kept as 0.6 in
both settings).

Training size PMSE: aveðstdÞ PC: aveðstdÞ
300 1.174 (0.175) 0.945 (0.010)
150 1.469 (0.289) 0.931 (0.017)

Table 2. Out-of-sample prediction accuracy on the test set with different
between-modality correlations (training sample size is kept as 300 in
both settings).

Between-modality correlation PMSE: aveðstdÞ PC: aveðstdÞ
0.6 1.174 (0.175) 0.945 (0.010)
0 1.300 (0.187) 0.866 (0.028)
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IMTL is trained on the training set that includes only
data from sub-cohorts 1, 2, and 4. Then, the trained model
is used to predict on the test set that only includes samples
from sub-cohort 3. The predicted response variables of the
test set are compared with the true responses to compute a
Prediction Mean Square Error (PMSE) and a Pearson
Correlation (PC). We repeat the entire experiment for 100
times. Tables 1 and 2 summarizes the results. As expected,
increasing the training sample size significantly improves
PMSE and PC (p< 0.001). The correlation between modal-
ities also helps improves PMSE and PC (p< 0.001), consist-
ent with the theoretical discovery in Section 4.1, in which
we found that the key to out-of-sample prediction was to be
able to estimate R23 from the training data. From Equation
(20), it is known that the estimation of R23 is affected by the
correlation between modality 2 and 3. Even though the
training data does not include samples with both modality 2
and 3 available, R23 can still be estimated indirectly by
IMTL through exploiting the between-modality correlation
and the relationship between modalities and the
response variable.

5.1.2. Out-of-sample prediction by IMTL classifica-
tion model

The data generation process of this experiment is the same
as the previous section, except that we use a logistic regres-
sion model to link the response variable with predictors/fea-
tures. Specifically, we first simulate a linear predictor

zðlÞi ¼ xð1lÞi b1 þ xð2lÞi b2 þ xð3lÞi b3 þ b0 þ �:

Then, yðlÞi is generated from a Bernoulli distribution with
success probability equal to 1= 1þ e�zðlÞi

� �
. Test accuracy is

reported as the Area Under the Curve (AUC). Tables 3 and
4 summarizes the results. Doubling the training sample size
does not seem to dramatically improve the AUC, although
this improvement is still statistically significant (p< 0.001).
The correlation between modalities also helps improve the
AUC significantly (p< 0.001).

5.2. Early diagnosis and prognosis of AD

5.2.1. Introduction to ADNI
ADNI (http://adni.loni.ucla.edu) was launched in 2003 by
the NIH, FDA, private pharmaceutical companies, and non-
profit organizations, as a $60 000 000, 5-year public-private
partnership. The primary goal of ADNI has been to test
whether MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to
measure the progression of MCI and early AD.
Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians

to develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of
California-San Francisco. ADNI is the result of efforts of
many co-investigators from a broad range of academic insti-
tutions and private corporations, and subjects have been
recruited from over 50 sites across the US and Canada. For
up-to-date information, see http://www.adni-info.org/.

5.2.2. Patient inclusion and diagnostic/prognostic
end points

Our study includes 214MCI patients from ADNI through our
collaborative intuition, Banner Alzheimer’s Institute (BAI),
with which two co-authors are affiliated. BAI is a member
of ADNI PET core (PI, William Jagust UC Berkeley).
Multimodality image data include MRI, FDG-PET, amyloid-
PET, which follow the IMD structure in Figure 1. Each sub-
cohort has the same sample size. For diagnosis, we use Ab
positivity is an indicator for high-risk AD. We follow the rec-
ommendation by Fleisher et al. (2011) and use a threshold of
mean standard uptake value ratios (SUVR) greater than or
equal to 1.18 to define Ab positivity. According to this criter-
ion, there are 87 and 127 patients in class 1 (high-risk) and 0
(otherwise). For prognosis, the purpose is to predict when an
MCI patient will convert to AD. We searched the ADNI data-
base for the 214 patients from the time when their imaging
data were collected up to 6 years’ follow up, and found that
46 converted to AD, i.e., there are 46 converters (class 1) and
168 non-converters (class 0).

5.2.3. Image processing and feature computation
For MRI images, we use the FreeSurfer (http://surfer.nmr.
mgh.harvard.edu/) software to extract volumetric measure-
ments for pre-defined Regions Of Interest (ROIs). We focus
on three ROIs including hippocampal, ventricle, and ento-
rhinal volumes relative to intracranial volume. All three
have been widely reported to be related to AD (Thompson
et al., 2004; Devanand et al., 2007). Both FDG-PET and
amyloid-PET are PET images, so they share the same image
processing step in which we use SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/) to spatially normalize each patient’s PET
images into the common Montreal Neurological Institute
(MNI) altas space. Then, we extract features from each type
of PET image separately. From FDG-PET, the features
include Hypometabolic Convergence Index (HCI) (Chen
et al., 2011), statistical Region Of Interest (sROI) (Chen
et al., 2010), and regional precuneus metabolism and poster-
ior cingulate metabolism. All these features have been previ-
ously reported to be related to AD (Del Sole et al., 2008;
Bailly et al. 2015). From amyloid-PET, the features include

Table 3. Out-of-sample classification accuracy on the test set with different
training sample sizes (between-modality correlation is kept as 0.6 in
both settings).

Training size AUC: aveðstdÞ
300 0.882 (0.037)
150 0.832 (0.05)

Table 4. Out-of-sample classification accuracy on the test set with different
between-modality correlations (training sample size is kept as 300 in
both settings).

Between-modality correlation AUC: aveðstdÞ
0.6 0.882 (0.037)
0 0.781 (0.046)
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SUVRs from six brain regions including orbital frontal cin-
gulate, temporal cortex, anterior cingulate, posterior cingu-
late, parietal lobe, and precuneus. These regions are known
to be associated with amyloid depositions and AD (Fleisher
et al., 2011).As the six SUVRs are highly correlated, we
apply Principal Component Analysis (PCA) and include the
first Principal Component (PC) as a feature for amyloid-
PET. Note that IMTL assumes normal distributions of the
features. In this application, this assumption naturally holds
because each feature is an average of voxel-wise measure-
ments within a brain region. Since many voxels are involved
in generating the average, the Central Limit Theorem
applies. Also, we generate normal Q-Q plots for the features
and find that the normality assumption holds.

5.2.4. Inclusion of clinical variables and feature screening
We also include the following clinical variables that could
potentially help the early diagnosis and prognosis of AD:
age, gender, years of education, APOE e4 status, and cogni-
tive test scores from several commonly used instruments
such as Mini-Mental State Examination (MMSE), AD assess-
ment scale-cognitive, Clinical Dementia Rating (CDR), and
auditory verbal learning test . No patient has missing data
for these clinical variables so they are used in the same way
as MRI features in our model. Furthermore, we put all the
features through a feature screening module using the
approach by Fan and Lv (2008). Note that feature screening
is only applied to the training set not the entire dataset to
avoid overfitting.

5.2.5. Application of IMTL
Within each sub-cohort, the samples are divided into five folds.
We combine four folds from each sub-cohort into a training set
and use the remaining data as the test set. We apply IMTL to
the training set and then use the trained model to predict on
the test set. We exhaust all four-fold combinations in training,
which produces a 5-fold cross-validation procedure for evaluat-
ing the accuracy of IMTL. This process is repeated for 50 times.
For comparison, two competing methods are applied on the
same data: SA and AADM. Table 5 summarizes the results.
IMTL has significantly higher AUC and sensitivity than both
competing methods in both diagnosis and prognosis. Notably,
competing methods have low AUC and sensitivity in prognosis.
This is greatly improved by IMTL. Prognosis is more challeng-
ing than diagnosis, due to the former having a heavily imbal-
anced dataset (46 converters vs. 168 non-converters). Clearly,
IMTL is more robust to sample imbalance. All models achieve

a similar level of specificity. Finally, we show the contribution
of each imaging feature to diagnosis and prognosis by plotting
the percentage of times a feature is included in the IMTL
model. The result is shown in Figure 3. Hippocampal volume
from MRI and the first PC of six SUVRs from amyloid-PET are
almost always included in both diagnostic and prognostic mod-
els. This is consistent with findings in the literature that hippo-
campal atrophy and amyloid-PET SUVRs provide most
important biomarkers for AD (Devanand et al., 2007; Fleisher
et al., 2011). Other features that are selected for over 50% of the
time include HCI, sROI and precuneus metabolism from FDG-
PET for diagnosis; and ventricle volume from MRI and HCI
and sROI from FDG-PET for prognosis. Clinical variables such
as age, APOE e4 status, MMSE, and CDR are more frequently
selected. These variables have been widely reported to be
related to AD.

6. Conclusion

In this article, we proposed IMTL to build predictive and
classification models for IMD data. We developed an EM
algorithm for parameter estimation of IMTL and further
extended it to achieve between-institutional collaborative
model estimation without the need for data pooling. We
demonstrated that IMTL was capable of out-of-sample pre-
diction and proved that it had larger Fisher information
than models without transfer learning under mild condi-
tions. This explained the superiority of IMTL from a theor-
etical standpoint. Simulation experiments demonstrated high
accuracy in using IMTL for out-of-sample prediction and
classification. IMTL was applied to AD early diagnosis and
prognosis, i.e., at the MCI stage, using incomplete multimo-
dality imaging data. Significantly higher AUC and sensitivity
were achieved in both diagnosis and prognosis compared
with competing methods. Image features selected to include
in the models were widely reported in the literature to be
related to AD.

This research has several limitations: First, IMTL assumes
normal distributions of features. To make IMTL an appro-
priate choice for an application, feature normality needs to
be checked. If the features do not follow a normal distribu-
tion, Cox transformation may be used. Nevertheless, exten-
sion of IMTL to non-normal features provides a more
general approach, and thus being an interesting future

Table 5. Diagnostic and prognostic performance: ave (std) and p value for
hypothesis testing that IMTL is better than a competing method.

Diagnosis Prognosis

IMTL SM AADM IMTL SM AADM

AUC 0.93(0.03) 0.86(0.06) 0.90(0.04) 0.85(0.05) 0.72(0.09) 0.78(0.07)
p< 0.001 p< 0.001 p< 0.001 p< 0.001

Sensitivity 0.91(0.06) 0.84(0.09) 0.88(0.06) 0.96(0.09) 0.58(0.18) 0.76(0.17)
p< 0.001 p¼ 0.03 p< 0.001 p< 0.001

Specificity 0.87(0.06) 0.82(0.06) 0.86(0.05) 0.85(0.05) 0.86(0.05) 0.86(0.05)
p< 0.001 p¼ 0.27 p¼ 0.78 p¼ 0.34

Note: The numbers in bold indicate that IMTL is better than competing methods.

Figure 3. Percentage of times imaging features are included in IMTL over 5-
fold cross-validation and 50 repeated experiments.
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research direction. Second, this article focuses on response
variables that are either normal or binary. Extending the
current modeling framework to other types of response vari-
ables will be valuable to address the need of various applica-
tion domains. Third, IMTL assumes equal variance-
covariance for the models in different sub-cohorts. This
assumption can be relaxed to accommodate potential sub-
cohort heterogeneity. Last but not least, although Theorem 1
reveals one advantage of IMTL in terms of greater Fisher
information (thus smaller variance asymptotically) for esti-
mators of the elements in the precision matrix, more theor-
etical studies may be performed on the estimators of other
parameters of IMTL to reveal their properties compared
with competing methods.
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